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Abstract

In order to formulate mathematical conjectures likely to be true, a
number of base cases must be determined. However, many combinato-
rial problems are NP-hard and the computational complexity makes this
research approach difficult using a standard brute force approach on a typ-
ical computer. One sample problem explored is that of finding a minimum
identifying code. To work around the computational issues, a variety of
methods are explored and consist of a parallel computing approach using
Matlab, a quantum annealing approach using the D-Wave computer, and
lastly using satisfiability modulo theory (SMT) and corresponding SMT
solvers. Each of these methods requires the problem to be formulated in
a unique manner. In this paper, we address the challenges of computing
solutions to this NP-hard problem with respect to each of these methods.

1 Problem Statement and Background

First introduced in 1998 [4], an identifying code for a graph G is a subset of
the vertices, S ⊆ V (G), such that for each v ∈ V (G) the subset of vertices
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Figure 1: The 2-ary de Bruijn graph of order 3, or B(2, 3).

of S that are adjacent to v is non-empty and unique. That is, each vertex of
the graph is uniquely identifiable by the non-empty subset of vertices of S to
which it is adjacent. More formally, let N(v) be the set of vertices adjacent to
v and B(v) = N(v) ∪ {v}. Then we require that any two vertices u, v ∈ V (G)
have different identifying sets, or more precisely that we must have S ∩B(v) 6=
S∩B(u), and also that both S∩B(v), S∩B(u) 6= ∅. The combinatorial problem
of finding minimum identifying codes has been shown to be NP-complete [3],
but also has many potential real-world applications.

As some NP-complete problems are notorious for having special graph classes
on which there are simple solutions, previous research has focused on the class
of de Bruijn networks [2]. This paper explores the problem of finding the mini-
mum size of an identifying code over the undirected de Bruijn graph using three
different methods. Section 2 explores a parallel computing algorithm, Section 3
discusses mapping the problem onto the D-Wave computer and using a quan-
tum annealing approach, and finally Section 4 illustrates the method of using
Satisfiability Modulo Theory (SMT) solvers.

While many of our examples and data revolve around the class of de Bruijn
graphs, the methods discussed throughout can easily be applied to arbitrary
graphs. For reference, we provide some of the basic definitions and background
here. The undirected d-ary de Bruijn graph of order n, denoted B(d, n), is the
graph with the following vertex and edge sets.

V = {x1x2 . . . xn | xi ∈ {0, 1, . . . , d− 1}}
E = {(x, y) | x2x3 . . . xn = y1y2 . . . yn−1 or x1x2 . . . xn−1 = y2y3 . . . yn}

For example, the graph B(2, 3) is illustrated in Figure 1. These graphs have
many useful properties for applications, such as having a relatively high number
of nodes, a low degree at each node, and many short paths between any two
nodes.

2 Parallel Computing

The Information Directorate of the Air Force Research Laboratory is home
to one of the Department of Defense’s high-performance computing systems
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(HPC). Installed on the HPC is Matlab, including the Parallel Computing Tool-
box. The pseudocode in Algorithm 1 describes our brute force algorithm, im-
plemented in Matlab.

Algorithm 1 Brute Force Algorithm

1: procedure BruteForce(d, n, k) . B(d, n) and subset size k
2: Create list of all subsets of k nodes
3: for i = 1 :

(
dn

k

)
do

4: if subset i is a valid identifying code then
5: Display subset i to user
6: else
7: Do nothing
8: end if
9: end for

10: end procedure

Parallelizing our algorithm takes two steps. The first step is to replace “For”
on line 3 with “Parfor”. This indicates to Matlab to use the parallel computing
toolbox and run each loop iteration independently. The second step requires
moving the construction of subsets inside the Parfor loop. Because of the expo-
nential increase in the number of subsets created, it is more efficient to generate
each subset within the loop and discard it after the iteration than to store all(
dn

k

)
k-subsets and traverse through the list. This is done using a k-subset un-

ranking algorithm. Two of these algorithms (from [5]) are listed as Algorithms
2 and 3. These unranking functions allow us to completely parallelize the brute
force algorithm, and the results obtained are listed in Figure 2.

Algorithm 2 Revolving Door Unranking Algorithm

1: procedure RevDoor(r, k, n) . subset index, subset size, set size
2: x = n
3: for i = k : 1 do
4: while

(
x
i

)
> r do

5: x = x− 1
6: end while
7: ti = x+ 1
8: r =

(
x+1
i

)
− r − 1

9: end for
10: end procedure
11: return T = (t1, t2, . . . , tk)

3 D-Wave Quantum Annealing Machine

Under the collaborative effort “Adiabatic Quantum Computing Applications
Research” (14-RI-CRADA-02) between the Information Directorate and Lock-
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Algorithm 3 Lexicographic Unranking Algorithm

1: procedure LexUnrank(r, k, n) . subset index, subset size, set size
2: x = 1
3: for i = 1 : k do
4: while r ≥

(
n−x
k−i
)

do

5: r = r −
(
n−x
k−i
)

6: x = x+ 1
7: end while
8: ti = x
9: x = x+ 1

10: end for
11: end procedure
12: return T = (t1, t2, . . . , tk)

d \ n 2 3 4 5
2 × 4 6 12
3 4 9
4 5
5 6

Figure 2: Results for B(d, n) obtained using HPC

heed Martin Corporation, we aim to extend the results obtained by the HPC
system. In general, the D-Wave machine can address a class of Ising problems
natively by the hardware. As stated in the D-Wave user documents, “The D-
Wave hardware can be viewed as a hardware heuristic which minimizes Ising
objective functions using a physically realized version of quantum annealing.”
[7] The Ising model is an energy minimization problem of -1/+1-valued vari-
ables. It can be converted to a quadratic unconstrained binary optimization
(QUBO) problem that uses 0/1-valued variables, and so they are often used
interchangeably.

3.1 Binary Optimization Model

We present a binary optimization formula for the minimum identifying code
problem. Adjustments must be made to create a quadratic version. We will
define this model using three separate functions: one to show that the set has
the correct size, one to show that the set is dominating, and one to show that
the set is separating (or identifying).

3.1.1 Variable Definitions

We will use the notation B(v) for v ∈ V (G), where B(v) = N(v)∪{v}. In other
words, B(v) is the set containing all vertices adjacent to v, plus v itself. This is
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referred to in graph theory as the ball of radius one centered at v.
We define the variables as follows.

xvi =

{
1, if i ∈ B(v);
0, otherwise.

3.1.2 Set S has size k

We define the first function, HA, as follows.

HA = (k −
∑

v xvv)
= 0 iff |S| = k.

3.1.3 Set S is a dominating set

By definition, this is equal to ∀v ∈ G, B(v) ∩ S 6= ∅. This is equivalent to the
following.

∀v ∈ G,B(v) ∩ S 6= ∅ ↔ (xvv = 1) ∨

(∑
uv∈E

xuv ≥ 1

)

↔ (1− xvv = 0) ∨ ¬

(∑
uv∈E

xuv = 0

)

↔ (1− xvv = 0) ∨

( ∏
uv∈E

(1− xuv) = 0

)
From this statement, we get the following equation for our second function.

HB =
∑

v(1− xvv) ·
(∏

uv∈E(1− xuv)
)

3.1.4 Set S is a separating set

By definition, this is equal to ∀x, y ∈ G, (B(x) ∩ S)4(B(y) ∩ S) 6= ∅. This is
equivalent to the following for a specific pair x 6= y.

(B(x) ∩ S)4(B(y) ∩ S) 6= ∅ ↔ ∃v ∈ (B(x) ∩ S)4(B(y) ∩ S)

↔ ∃v, (v ∈ B(x) ∩ S)⊕ (v ∈ B(y) ∩ S)

↔ ∃v, (xxv = 1)⊕ (xyv = 1)

↔ ∃v, (1− (xxv + xyv) = 0)

↔
∏
v

(1− xxv − xyv) = 0

From this statement, we get the following equation for our third function,
summed over all pairs x, y.

HC =
∑

x

∑
y 6=x

∏
v(1− xxv − xyv)2

5



3.1.5 The Binary Optimization Model

From these three functions, our binary optimization model is the following.

H(S) = HA(S) +HB(S) +HC(S)
= 0 iff S is an identifying code.

Note that while this does provide a binary optimization model for our prob-
lem, it is not quadratic. In order to convertH(S) to a quadratic binary equation,
each higher order term must be replaced with several new variables. While this
is possible, it is a time-consuming and arduous process that introduces many
new variables. Hence this approach will likely not be the most efficient imple-
mentation.

3.2 Integer Program Formulation

From [8], we have the following integer program formulation of the minimum
identifying code problem in graphs.

First, we define the modified adjacency matrix as follows. It is the adjacency
matrix plus the identity matrix.

Aij =

{
1, if (i, j) ∈ E or i = j;
0, otherwise.

Using this definition, we see that a ball of radius 1 centered at vertex i is
given by the following vector.

B(i) = [A1i, A2i, . . . , Ani]
T

Our vertex subset S is defined as the following vector.

S = [s1, s2, . . . , sn]T where si =

{
1, if i ∈ S;
0, otherwise.

To compare two identifying sets with respect to S for vertices i and j, the
following expression computes the size of (B(i) ∩ S)4(B(j) ∩ S).

n∑
k=1

|Aki −Akj | · sk

This implies that in order for S to be a valid identifying code, we must have
the following inequality satisfied for all pairs of vertices i and j.

n∑
k=1

|Aki −Akj | · sk ≥ 1

For the dominating property to be satisfied, we require the following addi-
tional inequality.

A · S ≥ 1T
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Thus our integer program is given by the following.

min |S|
s.t.

∑n
k=1 |Aki −Akj | · sk ≥ 1, ∀i 6= j

A · S ≥ 1T

sk ∈ {0, 1}

In order to use these ideas for the D-Wave machine, our constraints must be
equalities. This means we must add binary slack variables for each inequality.
For the first set of inequalities, we must determine an upper bound for each
inequality. Since these correspond to the constraint |(B(i)∩S)4(B(j)∩S)| ≥ 1,
an easy upper bound is given by the following.

|B(i)|+ |B(j)| ≥ |(B(i) ∩ S)4(B(j) ∩ S)| ≥ 1

For the class of de Bruijn graphs, we are able to use this to get a bound on the
number of slack variables needed. Since the maximum size of any ball in B(d, n)
is 2d + 1, this gives us an upper bound of size 4d + 2 for this class of graphs.
Hence for each inequality in this set, we must add 4d+ 2 binary slack variables

to convert the inequality to an equality. Since there are dn(dn−1)
2 possible pairs

i, j, this implies that we must add a huge number of binary slack variables, equal
to the following expression, just to satisfy the first set of inequalities.

dn(dn − 1)(2d+ 1) slack variables

Hence, this method is not going to be an efficient way to map our problem onto
the D-Wave machine.

3.3 Satisfiability Formulation

This approach formulates the identifying code problem as a boolean satisfiability
(SAT) problem. Each term in the SAT problem is mapped to an Ising model.
The mapping introduces auxiliary variables so that the Ising model contains
only quadratic and linear terms. A graph embedding technique is then used to
map this Ising model onto the connectivity of the D-Wave chip. Finally, gauge
transformations are used to mitigate the effects of intrinsic control errors. We
will illustrate each step with an example of B(d, n) when d = 2 and n = 3. As
stated previously, these methods easily apply to any graph.

3.3.1 SAT Formulation

First, we label the nodes of B(2, 3) from 0 to dn − 1 = 7. Then we define the
set of variables {xi} for i = 0, 1, . . . , 7 as follows.

xi =

{
1, if node i is included in the identifying code;
0, otherwise.

Next, we look at the ball for each node and form clauses corresponding to
their domination constraints.

7



Ball Contents Constraints
B(0) = B(000) {000, 001, 100} = {0, 1, 4} x0 ∨ x1 ∨ x4

B(1) = B(001) {000, 001, 010, 011, 100} = {0, 1, 2, 3, 4} x0 ∨ x1 ∨ x2 ∨ x3 ∨ v4
B(2) = B(010) {001, 010, 100, 101} = {1, 2, 4, 5} x1 ∨ x2 ∨ x4 ∨ x5

B(3) = B(011) {001, 011, 101, 110, 111} = {1, 3, 5, 6, 7} x1 ∨ x3 ∨ x5 ∨ x6 ∨ x7

B(4) = B(100) {000, 001, 010, 100, 110} = {0, 1, 2, 4, 6} x0 ∨ x1 ∨ x2 ∨ x4 ∨ x6

B(5) = B(101) {010, 011, 101, 110} = {2, 3, 5, 6} x2 ∨ x3 ∨ x5 ∨ x6

B(6) = B(110) {011, 100, 101, 110, 111} = {3, 4, 5, 6, 7} x3 ∨ x4 ∨ x5 ∨ x6 ∨ x7

B(7) = B(111) {011, 110, 111} = {3, 6, 7} x3 ∨ x6 ∨ x7

From this set of constraints, we form clauses for each pairwise XOR of balls.
This is shown in Figure 3

Now we can eliminate more specific clauses that are implied by more general
clauses. For example, Figure 4 shows which two-term constraints imply the
corresponding larger constraints. Hence, the only constraints that we have left
are given below.

x2 ∨ x3

x0 ∨ x2 ∨ x5

x2 ∨ x6

x0 ∨ x3 ∨ x5

x3 ∨ x6

x0 ∨ x5 ∨ x6

x1 ∨ x2 ∨ x7

x1 ∨ x4

x1 ∨ x5

x2 ∨ x4 ∨ x7

x2 ∨ x5 ∨ x7

x4 ∨ x5

Satisfying this set of constraints are the four possible minimum solutions,
given below.

{x1, x2, x3, x5}
{x1, x2, x5, x6}
{x2, x3, x4, x5}
{x2, x4, x5, x6}

3.3.2 Mapping SAT Clauses to Ising Models

We construct a Hamiltonian

H =
∑
j

Hj({xi, i ∈ Aj}) + λ
∑
i

xi.

Each of the terms has the property that

x∗ = arg min
xi

Hj({xi, i ∈ Aj}) iff

 ∨
i∈Aj

xi is true

 .
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We will show momentarily how the Hj are constructed. The last term λ > 0 is a
penalty term that rewards smaller size codes. Therefore, the minimum solutions
(or ground states) of H are the minimum identifying codes.

In order to solve the Hamiltonian using adiabatic quantum optimization,
we have the further constraint that the Hj must contain only quadratic and
linear terms in the binary variables {xi}. In general to accomplish this, we
must introduce auxiliary variables, which we will denote by {zi}. Also, we will
switch to the Ising model convention where each of the xi and zi can take values
{+1,−1} instead of {0, 1}.

The mapping from OR-clauses to Ising models that we will use, namely∨
i∈Aj

xi 7→ Hj({xi, i ∈ A}),

depends only on the number of variables k = |Aj | in the OR-clause. These
mappings for k = 2 through k = 6 are represented diagrammatically in Figure
5.

In the diagrams, numbers attached to a node represent the linear coefficients
in the Ising model, while numbers attached to an edge represent the quadratic
(coupling) coefficients in the Ising model. For example, the diagram for k = 3
represents the following Ising model.

H3(x1, x2, x3, z1) = x1x2 − 2x1z1 − 2x2z1 − 2x2z1 + z1x3 + x1 + x2 − 3z1 − x3

It can be confirmed that every ground state of H3(x1, x2, x3, z1) satisfies
x1 ∨ x2 ∨ x3, and conversely every combination of {x1, x2, x3} that satisfies
x1 ∨ x2 ∨ x3 corresponds to a ground state of H3(x1, x2, x3, z1).

3.3.3 Mapping the Ising model onto the D-Wave processor

In general, the graph of the Hamiltonian we get from the SAT-to-Ising mapping
will not fit onto the D-Wave hardware graph. The D-Wave hardware graph,
which is called the “Chimera” graph, is built up of unit cells, each of which is a
four by four bipartite graph, K4,4. Even the simple Ising model for 3-OR shown
in Figure 5 cannot be mapped directly onto the D-Wave hardware graph. This
can be seen from the fact that our graph B(2, 3) contains a 3-cycle, whereas the
smallest cycle possible on the D-Wave hardware graph is a 4-cycle.

Embedding

Our first step to embedding is to determine how to map our OR-clauses to
the physical qubits. One way to embed the 3-OR graph onto the D-Wave is
shown in Figure 6. We have mapped the logical qubit z1 to two physical qubits,
which are ferromagnetically coupled with a coupling strength -JFm.

Similarly, once we construct the full Ising Hamiltonian for the minimum
identifying code problem, we can use embedding to map the graph of the Hamil-
tonian onto the D-Wave hardware graph.

10



x
1

−
1

x
2

−
1

2
-O

R

x
1

+
1

x
2

+
1

z 1
−

3
x

3

−
1

3
-O

R

x
1

+
1

x
2

+
1

z 1
−

3

x
3

+
1

x
4

+
1

z 2
−

3

4
-O

R

5
-O

R

x
2

+
1

x
3

+
1

x
1

+
1

x
4

+
1

z 1
−

1
z 2
−

1

z 3
−

3
x

5

−
1

6
-O

R

x
2

+
1

x
3

+
1

x
1

+
1

x
4

+
1

z 1
−

1
z 2
−

1

z 3
−

3
z 4
−

3

x
5

+
1

x
6

+
1

+
1

+
1

-2
-2

+
1

+
1

-2
-2

+
1

-2
-2

+
1

+
1

-2
-2

+
1

-2

+
1

-2-2
-2

+
1

+
1

-2
-2

+
1

-2
-2

+
1

-2
-2

+
1

-2

+
1

-2

F
ig

u
re

5:
M

a
p

p
in

g
fr

o
m

O
R

-c
la

u
se

s
to

Is
in

g
M

o
d

el
s

11



x1+1

−2

x2

−2

+1

z1−1.5 z2 −1.5

x3 −1

+1

-JFm

+1

Figure 6: Embedding 3-OR onto the Chimera Graph

Problem Decomposition

If the graph of the Hamiltonian is too large to embed onto our current 504-
qubit D-Wave hardware graph, one trick we can try is to decompose the SAT
problem into smaller pieces that can be embedded. For example, in the B(2, 3)
example from earlier, one of the terms is x2∨x3. In order for this to be true, at
least one of x2 and x3 must be true. We consider and solve each case separately.

If x2 is true, then so is any OR-clause containing x2, so we can eliminate
those from the conjunction. We are left with the following clauses.

x3 ∨ x6

x0 ∨ x5 ∨ x6

x1 ∨ x4

x1 ∨ x5

x4 ∨ x5

Similarly, in the case where x3 is true we can eliminate terms containing x3,
leaving the following clauses.

x2 ∨ x6

x0 ∨ x5 ∨ x6

x1 ∨ x2 ∨ x7

x1 ∨ x4

x1 ∨ x5

x2 ∨ x4 ∨ x7

x2 ∨ x5 ∨ x7

x4 ∨ x5

Both of these subproblems are simpler than the original problem and hence
easier to embed. Whichever subproblem yields the smaller identifying codes will

12
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Figure 7: Example Gauge Transformation

be the solution of our original problem, or if both subproblems have minimum
solutions of the same size, then we can take the union of the two solution sets.

Gauge Transformations

Embedding complex graphs leads to long chains, i.e. multiple physical qubits
corresponding to the same logical qubit. In the current D-Wave embedding
solver, all of the physical qubits in a chain will be ferromagnetically coupled
with some coupling strength -JFm, which is iteratively increased to a large
enough magnitude to ensure that all of the physical qubits in the chain agree
(most of the time) and can be treated as a single logical qubit.

However, due to the characteristics of the D-Wave design, embeddings with
many long ferromagnetically coupled chains will have a greater tendency for
control precision errors which may affect solution quality. To combat these
effects, we can utilize a gauge transformation, where we redefine a subset of the
spin variables to be the opposite sign. Flipping a subset of the spins in this
way induces a transformation on the Ising coefficients: If S1 has been flipped
(S′1 = −S1), then h′1 = −h1. If one of S1 and S2 has been flipped, then
J ′12 = −J12. But if both of S1 and S2 have been flipped, then J ′12 = J12.

Consider for example the gauge transformation shown in Figure 7. In the
figure, the red qubits are flipped by the gauge transformation while the blue
qubits are unchanged. In the first unit cell, all of the horizontal qubits are flipped
while the vertical qubits are unchanged. In the next unit cell, all of the vertical
qubits are flipped while the horizontal qubits are unchanged. So, suppose our
embedding contains the chain 1 (blue vertical qubit), 5 (red horizontal qubit), 13
(blue horizontal qubit). Note that each consecutive pair in the chain contains
exactly one flipped qubit, so all of the ferromagnetic couplings -JFm in the
chain will be replaced with antiferromagnetic couplings +JFm by the gauge
transformation. By using gauge transformations like this, we may be able to

13



reduce the control precision errors caused by embeddings with long chains.

3.3.4 Results for B(2, 4)

By combining all of the above tricks, we obtained results for the minimum
identifying code problem on the d = 2, n = 4 undirected de Bruijn graph on the
D-Wave hardware.

SAT formulation

Figure 8 shows the full SAT formulation of the identifying code for B(2, 4).
This was obtained by following the procedure outlined in section 3.3.1. It con-
tains 50 clauses over 16 variables.

Problem Decomposition

For the full SAT formulation in Figure 8, the Ising model was too large to
embed on the current D-Wave hardware graph. The problem must be decom-
posed further. Note that two of the terms are x3 ∨ x11 and x4 ∨ x12. Thus, at
least one of x3 and x11 must be true, and at least one of x4 and x12 must be true.
Considering the branch where x3 and x4 are true, the SAT problem reduces to
the problem shown in Figure 9. This decomposed formulation consists of just
24 clauses over 14 variables.

SAT clause to Ising model mapping

Using the Ising model mappings shown in Figure 5, we generated an Ising
model with 49 auxiliary variables {zi} for a total of 63 variables. We furthermore
added the penalty term λ

∑
i xi so that the ground state will be a minimum

identifying code. Note that this is far better than the 1200+ auxiliary (slack)
variables required in the integer program formulation for this case.

Figure 10 shows the logical graph of the Ising model. In the figure, nodes
corresponding to the original 14 boolean variables are shown in green; the re-
maining nodes represent the auxiliary variables added during the SAT-to-Ising
mapping process.

Embedding

We used the D-Wave software function sapiFindEmbedding(), to find an
embedding of this Ising model onto the hardware graph of the 504-qubit D-
Wave machine at the USC-Lockheed Martin Quantum Computing Center in
Marina del Rey, CA. Figure 11 shows the embedding that we used, consisting
of 253 physical qubits, with a maximum chain length of 8.

In Figure 11, physical qubits corresponding to the same logical qubit have
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Figure 8: SAT Formulation for B(2, 4)
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Figure 9: Decomposed SAT formulation for x3, x4 true.

Figure 10: Logical graph of the Ising model

16



Figure 11: Embedding the problem onto the D-Wave hardware
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the same color and are labeled with the same number. The unlabeled red qubits
are known faulty qubits and are not used.

Gauge Transformations

Since we have an exact solution from the HPC system on the graph B(2, 4),
we know that the x3 = x4 = 1 branch of the problem should have a ground
state with the remaining variables

x8 = x10 = x13 = x14 = 1

corresponding to the minimum code size of 6. However, using the standard
D-Wave embedding solver (which does not yet support gauge transformations
- it uses all ferromagnetic couplings for the chains), we were not able to find
this ground state. Even using the maximum allowed combinations of D-Wave
function parameters annealing time and num reads (the number of annealing
runs per call), the best that we could obtain were solutions corresponding to a
code size of 7.

On the other hand, using a locally developed embedding solver, which also
has the capability to incorporate gauge transformations, we were able to find
the above ground state corresponding to a code of size 6, using the gauge trans-
formation shown in Figure 7.

3.3.5 Scaling for Larger Cases

While the B(2, 4) case is the largest that can be solved on the current 504-
qubit D-Wave processor, we can make some rough estimates of how the qubit
resource requirements scale for larger cases. For binary (d = 2) de Bruijn
graphs, we extended the techniques described above to generate Ising models
for the minimum identifying code problem for the cases n = 3 through n = 6.
These models were then embedded into ideal Chimera graphs of various sizes
using the D-Wave software function sapiFindEmbedding(). Figure 12 shows
how the number of qubits needed for the embedding grows as a function of n.

Since the embedding algorithm is heuristic, it is possible that smaller em-
beddings could be found, so the embedding sizes shown here should be viewed
as upper bounds. We computed embeddings firstly for larger versions of the
current C8 Chimera architecture, which has 8-qubit unit cells, as well as for
hypothetical C16 (16-qubit unit cell) Chimera graphs. For the C8 graphs, we
started with the current Vesuvius architecture, which contains 64 8-qubit unit
cells arranged in an 8x8 square grid, and increased the grid size to 12x12, 16x16,
24x24, 32x32, and so on until the embedding was successful. For the C16 graphs,
we started with an 8x8 grid of 16-qubit unit cells, and increased the grid size
to 16x16,24x24, and 32x32, until the embedding was successful. The plots show
that for any given case, the embedding size on C16 is smaller than on C8 due
to the higher graph connectivity of the C16 architecture; in other words, qubit
resource requirements depend on the hardware graph connectivity.

18



Figure 12: Estimated scaling of qubit resource requirements for minimum iden-
tifying code problem on binary de Bruijn graphs
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From the figure, we can project roughly when the D-Wave processor would
have sufficient qubits to accommodate the larger cases of the minimum iden-
tifying code problem for undirected binary de Bruijn graphs. If we define a
processor generation to be 4 times the number of qubits as the previous gener-
ation (e.g. the “Vesuvius” generation had a 512-qubit design whereas the prior
“Rainier” generation had a 128-qubit design), we can state that in roughly 1.5
generations we would be able to fit the B(2, 5) case on the processor. This is
the largest d = 2 case for which the minimum identifying code size is presently
known. In one more generation beyond that, we would be able to fit the B(2, 6)
case on the processor, for which the minimum identifying code size is presently
not known.

Whether these hypothetical D-Wave processors would actually be able to
solve these larger cases, will depend on the performance characteristics of those
machines which is yet to be demonstrated. The hardware intrinsic control errors
would need to be significantly reduced from the current levels. For example, the
embedding we found for the B(2, 6) case on the C8 architecture had a maximum
chain length of 63 qubits. Solving a problem with chain lengths this large would
probably require 6 to 7 bits of precision (the current Vesuvius design has 4 bits
of precision). On the C16 architecture, the embeddings are less complex; e.g.
the embedding we found for the B(2, 6) case only had a maximum chain length
of 25 qubits. However, it is not clear how difficult it would be for D-Wave to
achieve a 16-qubit unit cell design.

Due to risk factors such as these, it could take longer than the projected
number of processor generations before a solution can be found to the B(2, 6)
case. On the other hand, it may be possible to break the problem down into
subproblems using the decomposition technique described above, which may
make it easier to fit the problem onto the D-Wave processor.

4 SMT Solvers

Satisfiability Modulo Theory (SMT) is a current area of research that is con-
cerned with the satisfiability of formulas with respect to some background the-
ory [1]. SMT solvers combine boolean SAT solving with decision procedures for
specific theories. For example, consider the following problem.

a = b+ 1, c < a, c > b

In the theory of the integers, this problem is not satisfiable (there are no integers
a, b, c where all the expressions are true), however in the theory of the real
numbers it is satisfiable (for example, with a=11, b=10, c=10.5). In general,
solving an SMT problem consists of first solving a SAT problem, then doing
theory-specific reasoning, and then possibly going back and changing the SAT
problem. This process is repeated if necessary. In addition, multiple theories can
also be used in the same SMT problem instance, which may require additional
repeats of this method.
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Figure 13: Minimum identifying codes on B(d, n)

To use SMT solvers on our identifying code problem for the undirected de
Bruijn graph, we must first come up with a formulation of the problem using
decision procedures. The graph B(d, n), contains dn nodes. For each of these,
we create a boolean variable that denotes whether or not the node is part of
the identifying code. We then also create an array of boolean variables for that
node’s identifying set. An assertion is added to make sure that each element of
the array is true if and only if the corresponding neighbor’s boolean variable is
true (i.e. if and only if the neighbor is part of the identifying code). To ensure
unique codes, we add a statement to require that each node’s identifying set is
unique from every other node’s identifying set. Then, to get codes of a fixed
size, we create an integer variable for each node and add the constraints that the
integer is at least 0 and no greater than 1. Next we add an assertion that each
node’s integer variable is 1 if and only if its boolean variable is true. Finally,
we add a constraint that the sum of all of the integer variables is equal to the
desired identifying code size.

Now that the formulation of the problem has been determined, we can use
a commercial SMT solver to find solutions. For this work, we used the solver
Z3, made by Microsoft Research. We begin by first picking a code size, and
asking if there exists an identifying code of that size. If not, then the code size
is increased by 1 and the problem is posed to Z3 again. This continues until
an identifying code of a specific size is found. To find all satisfying models,
after a single model was found an assertion is inserted into the formulation
that requires that the the previously found identifying code be eliminated as
an option. This forces Z3 to produce a different solution, or to state that the
formulation is unsatisfiable (and hence no more identifying codes of that size
exist). This process is repeated in a loop to obtain all identifying codes.

Using this approach on a single core, we were able to reproduce our results for
B(d, n) from the HPC method in much less time. See Figure 13 for a summary
of these results. The numbers in parentheses denote that we found a code of
that size, but did not eliminate the possibility of a smaller code existing.

Because of the advancements in current SAT and SMT solvers, they offer the
potential to scale much better than a parallelized brute force approach. This
is due in part to the fact that many of today’s solvers are capable of realizing
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which subsets of assignments will define an unsatisfiable result, and hence they
will avoid models in which those statements are set. In our problem, this might
correspond to a case in which nodes A and B have the same identifying set.
In this case, the solver would not bother looking at combinations of True/False
assignments on the other nodes that do not affect the identifying sets of A or
B.

In addition to the sophistication of today’s solvers, there is also the possi-
bility of parallelizing the search. While some instances were run manually in
a parallel manner for this experiment, there is some research to be done on
automatically parallelizing the search in order to further our known minimum
results.

5 Conclusions

The various methods discussed provide pure mathematicians with a range of
opportunities for collaboration with scientists from several disciplines, such as
computer science and physics. While it has been shown that some of these ideas
correspond well to other combinatorial-type problems (for example, see [6] for a
discussion of Ising models for problems from graph theory), we found that these
approaches alone did not provide a strong enough method for this problem.
Additionally, the relatively recent appearance of the D-Wave machine allowed
for very little literature to draw from. From the base cases that we constructed
using our variety of approaches, several new conjectures have been developed
and eventually proven true [2], however the leg work needed to compute the
base cases required a deep understanding of various computing techniques.
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